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ABSTRACT. A new class of nonstationary stochastic processes 1s introduced
and some of the essential properties of its members are
investigated. This class is richer than the class of stationary
processes and has the potential of modeling some nonstationary
time series.

Let X, be a second order stochastic process with mean zero
and covariance

R(m,n) = EXgX,.

A stochastic process X, is called stationary if R(m,n) depends
only on m-n, i.e., if R(m,n) = R(m+l,n+l), for all m,neZ. The
process X, is called periodically correlated with period T if

R(m,n) = R(m+T, n+T) for all m,neZ.

As a natural extension of these well-known stochastic processes, a
linearly correlated processes is defined to be one for which there
exist scalars aj such that

R(m,n) = Zaj R(m+j, n+j), for all m,neZ.
J

-
The relation between these newly defined processes with other
important classes of nonstationary processes is investigated.
Several examples of linearly correlated processes which are not
stationary, periodically correlated, or harmonizable are given.
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1. INTRODUCTION. The purpose of this paper is to introduce a new class of
stochastic processes which contains all stationary and periodically
correlated processes as well as some other interesting processes such as the
Wiener process. As will be seen, this new class is a natural extension of
the well studied class of stationary processes.

As we all know, a zero mean second order stochastic process X,, n€Z, is
stationary if

R(m,n) = R(m+l, n+l); for all m,neZ,

where R(m,n) = EXpX, is the correlation function of the process X;. In other
words, for X, to be stationary, R(m+r,n+r) must be the same for all integers
T. Since for many time series in practice, R(m+r,n+r) does not stay the
same for all r, it is then not appropriate to model them as a stationary
process. However, for our new class, R(m,n) does not have to be equal to
R(m+l,n+l) or R(m+2,n+2), etc., but equal to a linear combination of thesé
correlations. So some time series can be modeled more accurately as a member
of this new class.

Recently, there has been a considerable interest in studying classes of
nonstationary processes [2],[3],{4]. One of these classes which again
extends another aspect of stationary processes in a very natural way 1is the
class of harmonizable processes. For the definition and properties of
harmonizable processes and some other classes of nonstationary processes, the
reader is referred to the interesting exposition [l] and the references
therein.

In section 2, we introduce our new class of nonstationary processes and
give a few examples and some preliminary discussion regarding them. In

section 3, we study some basic properties of this new class. In particular,



we will look for their relations with the class of harmonizable processes and
the support of their power spectra.

2. LINEARLY CORRELATED AND CONVEXLY CORRELATED PROCESSES. 1In this section
we introduce our new class of nonstationary stochastic processes which is a
natural extension of the well-known classes of statiqnary and periodically
correlated processes. We also recall some definitions and results which are
needed throughout this paper.

The classes of linearly correlated and convexly correlated processes
which we introduce shortly are much richer than that of stationary processes
and hence can serve us better for the purpose of time series modeling. As an
example, an important nonstationary stochastic process 1is the Wiener process
Wn, n€EZ, whose correlation function is given by

min(m,n); m,nz 0
R (m,n) =
0 ; otherwise
One can see that this important process 1is not even harmonizable (see
Definition 2.7). Nevertheless, we will see that W, is a linearly correlated
process. In fact, although R(m,n) is neither equal to R(m-1, n-1) or R(m+l,
nt+l), it is equal to their average, namely
R(m,n) = % R(m-1,n-1) + ¥ R(m+l,n+l),
for all positive integers m and n. This then shows that the Wiener process
Wn is in the new class (see Definition 2.1 and Remark 2.3).

Let (Q,B8,P) be a probability space and'Xh, neZ, be a sequence of random
variables on this probability space. Throughout, we assume our stochastic
process X to be of second order, namely EIXnI2 < » for all n, and to have
zero mean,namely EX, = O for all n.

Now, let's introduce our new class of nonstationary processes.




2.1 DEFINITION. Let X,, n€Z, be a zero mean second order stochastic process
and let S be a subset of Z. The process X, is called linearly correlated on

S if there exists a positive integer p and some complex numbers aj, j=0, *1,

2, ..., ¥p such that
P
(2.2) R(m,n) = £ aj R(m+j, n+j), for all m, nesS.
l3[=1
2.3 EXAMPLES. As we know, a process X, is called stationary if its

correlation satisfies the relation.
R(m,n) = R(m+l, n+l), for all m,neZ,

and hence (2.2) with p=1, a.] = 0 and a;] = 1. So any stationary process is
linearly correlated on Z.
(b) A process X, is called periodically correlated with period q if its
correlation function satisfies

R(m,n) = R(m+q, n+q), for all m,neZ,
and hence (2.2) with p=q, aqg = 1 and all the other aj equal to 0. So all
periodically correlated processes are linearly correlated on Z.
(¢c) The Wiener process Wn mentioned before is linearly correlated on the set
of positive integers. This is because one can easily check that
(2.4) R(m,n) = 3 R(w+l,n+l) + ¥ R(m-1,n-1), for all m,n > O.
In fact, if m,n are two positive integers with say m>n, then (2.4) reduces to

n=25% (ntl) + %k (n-1)
which is clearly true. el
(d) Let X, be a stationary process and a be any complex number. Consider
the stochastic process

Y, = a X.

Then one can show that Y, is periodically correlated on the set of all



integers. In fact, one can see that the correlation function of Y, satisfies

R(m,n) = _—lE" R (m+l, n+l) + al?

R (m-1, n-1
AL a2 & )

for all m,neZ.

(e) Let X, be a stationary stochastic process and consider the process Yp
defined by
Yn = nXj.
Then one can easily check that
R(m,n) = 3R(m+l,n+l) - 3R(m+2,n+2) + R(m+3,n+3), for all m,neZ.

Hence Y, is linearly (even convexly) correlated.

Notes. (a) The linearly correlated process of example (d) is not
- periodically correlated unless |a| = 1. This is because in this example,

E|X,]|2 goes to = with n. While for a periodically correlated process, these
quantities stay bounded.

(b) One can find other examples by replacing the stationary process
of examples (d) and (e) by a periodically correlated process.

An important class of non-stationary processes is that of harmonizable
processes. It is thus essential to study the relations (if any) that exist
between our classes of linearly correlated and convexly correlated processes
introduced here and the class of harmonizable processes. We postpone this
study until the next section. However, here we would like to recall the
definition of harmonizable processes as well:fs some of their properties that
we will need in the next section. For more detail on these, see [1], [5].

2.7 DEFINITION. A process X, 1is called strongly harmonizable if its

correlation function can be represented as

(2.8) R(m,n) = f2 e ~i(mA-nd) g4r(r,9),
I
where F is a complex-valued measure on the unit interval 12-[0,2x]x[0,2x]
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which is of finite Vitali variation. It is called weakly harmonizable if one
has the relation (2.8) with F being only a bimeasure with finite Frechet
variation on I2. In either of those cases, F is called the spectral measure
of the process Xj.
2.9 DEFINITION. Let X, be a second order process, so that the X,'s belong
to H-Lz(ﬂ,ﬂ,P). X, is said to have stationary dilation if one can find a
larger Hilbert space K 2 H and a stationary process Y, €K such that

Xn = PY,: for all neZ,
where P is the orthogonal projection of K onto H.

The following useful result is now well-known., (cf. {1], [5], [6])

2.10 THEOREM. A second order process X, is weakly harmonizable if and only
if it has a stationary dilation.

Finally, it is well-known that any stationary process 1is strongly
harmonizable and its spectral measure is concentrated only on the diagonal
D={(),8): A=8} of 12. It is also known (see [4]) that every periodically
correlated process with period q is also strongly harmonizable. Howevér, in
this case, the spectral measure is supported on 2q-1 equidistant straight

lines parallel to the main diagonal of 12, namely on the lines

D = {(X,8); =8 + 2xk}, k = 0,%1,...,%(q-1)
q
3. LINEARLY AND CONVEXLY CORRELATED PROCESSES AND THE ONIZ TY. In

this section, we will study the relation between our newly introduced
linearly and convexly correlated processes *and the harmonizable processes.
As we have shown, stationary and periodically correlated processes are both
linearly correlated and harmonizable. Thus, the following questions are
natural to ask and reasonable answers to them seem essential for any further
study of the linearly correlated processes.
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Question 1. Are all linearly correlated processes strongly harmonizable?
Quesrion 2. For those linearly correlated processes which are strongly
harmonizable, what is the support of their spectral measure?

The answer to Question 1 is negative: To see this, consider the linearly
correlated process Y, = 2T X, of Example 2.6. If this process were strongly

harmonizable, then

R(m,n) = f2 e ~1(mA-nbd) gp(a,9),
1

for some spectral measure F which is of finite Vitali variation. Thus

|Ry(m,n)| =< {2le'i<“’*'“")lanno.o)

and hence

|Ry(m,n)| < [F|(I,I) < =
for all m,neZ, i.e. Ry(m,n) must be bounded which clearly contradicts the
fact that Ry(nm,n) = 22P Ry(0,0) goes to ® with n.

This then closes Question 1, but instead raises the following:

Question 3. Is there any linearly correlated process, other than the
stationary and periodically correlated processes, which 1is weakly
harmonizable?

Question 4. How about if we replace weakly with strongly in Question 3?

In this section, we first address Question 2 furnishing a complete answer
to that (see Theorem 3.1) and then prove some other related results. At the
end of this section, we give a partial amswer to Question 3 (see Theorgm
3.11) by proving a dilation result (see Theorem 3.7) as well as giving an
example showing the answer to Question 4 is on the positive side (see Example
3.12).

The following theorem gives a complete description of the support of the



spectral measure of linearly correlated stochastic processes.

3.1 THEOREM. A strongly harmonizable stochastic process X, is linearly
correlated if and only if its spectral measure is concentrated on a finite
number of straight lines parallel to the main diagonal of 12 (not necessarily
equidistance).

PROOF. Suppose that the spectral measure F of a stochastic process X, is

concentrated on say k straight lines parallel to D = {(A,ﬂ): A-o}, SO0 one can

find real numbers dj, j=1, 2, ..., k such that the support of F is on
k

the set U {(1,0): § = X + dj}. Since the function I (e-1(2-6) -eldy)
j=1 j=1

vanishes on the support of F, we can write
i k
(3.2) [ e-iQm-6n) g (e-1(A-8) _o1dyy gF(a,)=0 for all m,neZ.
12 j=1
Multiplying the product in (3.2) out, we get
. k
[, estQmn) (5 cy(e1(X-0)]) aFr(r,6)=0, for all m,nez.
12 §=0
This means

k
= cj R(m+j, n+j) = O, for all m,neZ,

J=0
which clearly means that our process X, is linearly correlated. Conversely,

suppose X, is a linearly correlated process which is strongly harmonizable.

So we have %
k
R(m,n) -.20 aj R(m+j, nt+j); for all m,n€Z,
J-

Without loss of generality, we can take aj-O for all negative j’'s. So, for

all m,n€Z, we can write



k
J, e 1®A10) 4r(x,4) = £ ay [ (e l(@And) ¢-13(A-0) ara,p),
12 j=0 12
or

k
fz e-1(mi-nf) [1- = . aj e°ij(X-9)] dF(X,ﬂ)-O.
I i=

This means that 1- Z aj e 11(x-0)0 for a.e. (2,0) with respect to the
j=0

measure dF, Thus, the support of F must be included in the set

k
{(A,B)GIZ: z aj e-1j(2-6) -1} for X-§. Solving the equation Z aj e-11(A-8)y

j=1
for A-4 and listing its distinct real solutions by d;, dz, ...dp, we conclude
that the support of F is included in the set

2
{(x,8): A-0 = a5

j=1
consisting of £ straight lines parallel to the main diagonal of 12,

The last theorem gives a complete description for the support of the
spectral measure of a harmonizable linearly correlated process. Its support,
as in the case of stationary and periodically correlated processes, is on a
finite number of straight lines parallel to the main diagonal. However, now
these lines do not have to be equidistant.

3.3 REMARK. One can easily check that for strongly harmonizable stochastic
processes every linearly correlated process is convexly correlated. In fact,
if we have a linearly correlated process whish is strongly harmonizable, then
as we saw in the second half of the proof, its spectral measure is

2

concentrated on v {(A,o): A=l = -dj}. So
j=1



£
I (e'i(*'a) -eidj) =0 a.e, dF
j=0

where dg = 0. This means that
. 2
J -i(mA-nd) g (e-1(2-4) -eidj) -0, for all m,neZ.
12 j=0
Expanding the product and writing the resulting equation in terms of the
correlation function, we get
2+1
b bj R (m+j,n+j)=0; for all m,neZ,
j=0

where byy] = 1 and the other bj's come from

2+1 . 2
T bj e~1(A=0)] o (el(M-0).1y 1 (el(A-0) _oidj)
j=0 j=1

If we put 0 for A-§ on both sides of (3.4), we get

1 1
1+ 2Z bj - 0 or X (-bj) -1
j=0 j=0

This fact together with (3.5) proves our claim.
Let's call a process positively convexly correlated if it is convexly
correlated and if its correlation function satisfies
P P
3.5 { R(m,n) = £ aj R(wtj,n+j), with E aj =1 and aj = 0 for all j.
l5]-1 l3]=1
The following result is somewhat surprising.

3.6 THEOREM. The only positively convexly. correlated processes which are

strongly harmonizable are the periodically correlated ones.
PROOF, Let X, be a positively convexly correlated process satisfying (3.5).
Suppose also that X, is strongly harmonizable with spectral measure F. As in

the proof of Theorem 3.1, we see that the support of F is included in the set

. o o N e L e ———srn - A



P
(A, 0): z aj e'ij(x'a)-l
[3]=1

which can be rewritten as

P P
{ (A,8): £ ajcos j(A-6)=1 and = sgnj aj sin j (A-4) = OF.

[3]=1 |3]-1
P
Now, since all aj =0 and Eaj-l, one can see thatlzl aj cos J(-8)=1 is
jl=1

possible only if cos j(A—f#)=1 whenever aj +a.y» 0. So, letting
S = (j: aj +a.j~ 0), we conclude that the support of F is included in the

set N {(A,o): cos j(A-4)= 1}. Let q be a common divisor for the integers
jes

in S. Then one can see

q-1

n {(x,8): cos j(a-8)= 1} c U {(r,0): A= + 220}

jes n=-q+l1 q
Thus, F is concentrated on 2q-1 lines

{(x,8):x = 6 + 220} o0, 21, ..., £ (q-1).

q

This in turn means that

[ e-i(mr-nd) (o1q(A=0)_1) gF(x,)=0,  for all m,n.

12

This, rewritten in terms of the correlation function gives
R(m,n) = R(m+q,n+q), for all m,neZ.

Thus, X, must be periodically correlated with period q.

Now, we turn to Question 3. However, beﬁgre that we prove the following
dilation theorem which is crucial for our development. This theorem is of
course of independent interest. This not only shows that a class of convexly
correlated processes have a stationary dilation, but also gives the precise

form of their stationary dilation processes,
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We say a process 1is one-sided positively convexly correlated if its

correlation function satisfies

-1
(3.7) R(m,n) = Z aj R(m+j,n+j),
j=-p
-1
with aj 2 0 and X aj = 1.
j=-p
3.7 THEOREM. Any one-sided positively convexly correlated process has a
stationary dilation.
PROOF. Let Yy = [c.p+1Xn-p+ls C-p+2Xn-p+2: ...co¥p] be a vector random

process with values in the Hilbert space HP, with cg=l and, for -p+l sj< -1,

¢y is any complex number satisfying

j-1

(3.9) lcyl2 = = ag
k=-p
It is quite clear that
Xn = P Yp: for all m,n€eZ,

where P:H9 - H is the orthogonal projection sending each element of HY to its
first component. So we must show that Y, 1s actually stationary. To show
this, we need to check that

(Yn, Yp) = (¥p-1, Yp-1).
To see this, consider the expression

(Yn-1, Ym-1) - (Y, Yp) =

P ~ p
> 1|c_p+j|2 R(n-p-1+j, m-p-1+j) -§ 1|°-p+j|2 R(n-p+j, m-p+j)
J- -

11



P
- Ic_p+1|2 R(n-p, m-p) + = Ic-p+j|2 R(n-p-1+j, m-p-1+j)
j=2

p-1
-2 Ic-p+J|2 R(n-p+j, m-p+})-|co|?R(n,m)
j=1

p-1
- Je.ps1l? R(n-p, m-p) + Z 1|°-p+j+1|2 R(n-p+j, m-p+j)
J-

p-1 2 2
- £ Je.p+yl® R(n-p+j, m-p+j)-|Co|“R(n,m)
j=1

(3.10) p-1
- |°-p+1|2 R(n-p, m-p) +j21 [Ic-p+j+ll2 - Ic-p+j|2] R(n-p+j, m-p+j)

- |eol|? R(n,m).
Now, from (3.8) we see that
¢ 1) |°o|2 -1
. 2 P
( ii) Ic-p+1| -2 ag = a.p,
k=-p
. ) , P -pi-l
(iii) IC'P+j+1| - |°-p+jl - z ag - 2 = a.p+j, for 1<j<p-2
k=-p k=-p

( iv) Adding the equations in (ii) to those in (iii), we get

-2 -1
le.1]? =2 ag= -ZT ag-a.]=1-aq,
k=-p k=-p

which gives the coefficient Ic-p+j+l|2 - lc-p+j'2 in (3.9), for j = p-1 to be
leol? - |e.1]2 = 1- (1-a.1) = a.1.

Substituting from (i)-(iv) in (3.10), we get

-1
(Yp-1,¥p-1)-Yn,¥Yp) = 2 aj R(n+j),m+}) - R(m,n)
j=-p
which is zero by (3.7). Q.E.D.
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We can now prove the following which provides a partial positive answer

to Question 3.

3.11 THEOREM. Every one-sided positively convexly correlated stochastic
process X, is weakly harmonizable.

PROOF. Since by Theorem 3.8 the process X, has a stationary dilation. The
proof can be completed by appealing to the main Theorem of [5] which says: A
stochastic process is weakly harmonizable if and only if it has stationary
dilation.

In connection with last result, one may ask whether linearly correlated
processes are weakly harmonizable. The answer 1is no. For instance, the
.examples (d) and (e) mentioned in section 2 can not be weakly harmonizable.
Because any weakly harmonizable process having a stationary dilation should
have a bounded sequence of variances and this was not the case for these
examples (as we noted before),

The following example shows the answer to Question 4 on the positive

side.
3.12 EXAMPLE. Let Z(*) be an orthogonally scattered stochastic measure on

{0,2x) and define a new stochastic measure Y(°) on [0,2x] by

Y(a) = 2(an[0,2x]) + Z(an[0,2x]-/2)
where B-a = {b-a:€B}. Consider the strongly harmonizable processes

Xn = fe-infay(s)
One can easily see that the spectral measur® of X, is concentrated of the
diagonal A= and lines A-6=%/2 of 12, By theorem 3.1 X, 1is linearly
correlated and it is clearly not stationary or even periodically correlated.

Another important feature of stationary processes which turns out to be

extremely useful is the existence of a unitary shift. However, when it comes
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to nonstationary processes, even the existence of a shift operator is not
always guaranteed [3]. So, it is nice to know when a nonstationary process
does have a well-defined shift and if it does have one whether it is bounded.
We conclude this work with the following result which examines the
existence of shift operator and its boundedness for a positively linearly
correlated process.
3.13 THEOREM. Let X, be a positively convexly correlated process whose
correlation function satisfies (3.5). If a3 > 0, then X, has a bounded
shife. If a_; > 0 too, then its shift is boundedly invertible as well.
PROOF. Take any finite linear combination 2 byXy of Xy'’s, then we can write

| SbyXy |2 = = byby' (X, Xi')
k K, k'

= Z byby’ 2 aj (Xk+i, Xkr+1)
e (51 e 2]

p p

-? aj [2 bybyk’ (Xk,Xk')] - X aj "Z bkxk+j ||2
[3]=1 k, k' l3]-1
This implies that
(3.14) | ibkxk | = /a1 | i biXk+1 |

Now if aj; > 0, it is quite clear from (3.14) that the shift operator defined
via

U (ZbyXk) = & bpXk+l -
is well defined and bounded. This completes the proof of the first part.

The second part can be proven similarly using the inequality:

| X | 2 Ja-1 | 2 byckieey |

14




3.15 REMARK. In this present work we have only considered discrete time
processes. We are planning to sctudy continuous time linearly ;Otrelaced
processées in fucture. It looks 1like they have nice applications in
|
engineering. For example; in analyzing the helicopter noise wheyre the sound
reaching an obsérver consist of two periodically correlated random noise
processés generated by the main and tail rotors. Ordinarily, the periods of
these two signals are incom;;nsurate. One can see that the helicopter noise
is thén nor periodically correlated. However, this continuous time processq( '

turns out to be linearly correlated and harmonizable. This application is

illuscrated in cthe following figure.

HELICOPTER NOISE FIELD

X

JOE= \*P (1)

Observer
P(t)=P ()+ Py (1)
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